Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(50): 109423-109437, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37775630

ABSTRACT

Contamination of water by toxic dyes is a serious environmental problem. Adsorbents prepared by an environmentally safe route have stood out for application in pollutant removal. Herein, iron oxide-based nanomaterial composed of Fe(III)-OOH and Fe(II/III) bound to proanthocyanidins, with particles in the order of 20 nm, was prepared by green synthesis assisted by extract of açaí (Euterpe oleracea Mart.) berry seeds from an agro-industrial residue. The nanomaterial was applied in the adsorption of cationic dyes. Screening tests were carried out for methylene blue (MB), resulting in an outstanding maximum adsorption capacity of 531.8 mg g-1 at 343 K, pH 10, 180 min. The kinetics followed a pseudo-second-order model and the isotherm of Fritz-Schülnder provided the best fit. Thermodynamic data show an endothermic process with entropy increase, typical of chemisorption. The proposed mechanism is based on the multilayer formation over a heterogeneous adsorbent surface, with chemical and electrostatic interactions of MB with the iron oxide nanoparticles and with the proanthocyanidins. The high adsorption efficiency was attributed to the network formed by the polymeric proanthocyanidins that entangled and protected the iron oxide nanoparticles, which allowed the reuse of the nanomaterial for seven cycles without loss of adsorption efficiency.


Subject(s)
Euterpe , Proanthocyanidins , Water Pollutants, Chemical , Ferric Compounds , Coloring Agents , Adsorption , Thermodynamics , Kinetics , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Methylene Blue/chemistry
2.
PLoS One ; 13(6): e0199207, 2018.
Article in English | MEDLINE | ID: mdl-29920546

ABSTRACT

A growing body of evidence suggests a protective role of polyphenols and exercise training on the disorders of type 2 diabetes mellitus (T2DM). We aimed to assess the effect of the açaí seed extract (ASE) associated with exercise training on diabetic complications induced by high-fat (HF) diet plus streptozotocin (STZ) in rats. Type 2 diabetes was induced by feeding rats with HF diet (55% fat) for 5 weeks and a single dose of STZ (35 mg/kg i.p.). Control (C) and Diabetic (D) animals were subdivided into four groups each: Sedentary, Training, ASE Sedentary, and ASE Training. ASE (200 mg/kg/day) was administered by gavage and the exercise training was performed on a treadmill (30min/day; 5 days/week) for 4 weeks after the diabetes induction. In type 2 diabetic rats, the treatment with ASE reduced blood glucose, insulin resistance, leptin and IL-6 levels, lipid profile, and vascular dysfunction. ASE increased the expression of insulin signaling proteins in skeletal muscle and adipose tissue and plasma GLP-1 levels. ASE associated with exercise training potentiated the reduction of glycemia by decreasing TNF-α levels, increasing pAKT and adiponectin expressions in adipose tissue, and IR and pAMPK expressions in skeletal muscle of type 2 diabetic rats. In conclusion, ASE treatment has an antidiabetic effect in type 2 diabetic rats by activating the insulin-signaling pathway in muscle and adipose tissue, increasing GLP-1 levels, and an anti-inflammatory action. Exercise training potentiates the glucose-lowering effect of ASE by activating adiponectin-AMPK pathway and increasing IR expression.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Euterpe , Hypoglycemic Agents/therapeutic use , Physical Conditioning, Animal , Phytotherapy , Plant Extracts/therapeutic use , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Blood Glucose/analysis , Combined Modality Therapy , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/therapy , Diet, High-Fat , Drug Evaluation, Preclinical , Glucagon-Like Peptide 1/blood , Glycated Hemoglobin/analysis , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/pharmacology , Insulin/blood , Insulin Resistance , Interleukin-6/blood , Leptin/blood , Lipids/blood , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Plant Extracts/pharmacology , Random Allocation , Rats , Rats, Wistar , Seeds/chemistry
3.
J Nutr Biochem ; 52: 70-81, 2018 02.
Article in English | MEDLINE | ID: mdl-29175669

ABSTRACT

Type 2 diabetes mellitus contributes to an increased risk of metabolic and morphological changes in key organs, such as the liver. We aimed to assess the effect of the açaí seed extract (ASE) associated with exercise training on hepatic steatosis induced by high-fat (HF) diet plus streptozotocin (STZ) in rats. Type 2 diabetes was induced by feeding rats with HF diet (55% fat) for 5 weeks, followed by a single low dose of STZ (35 mg/kg i.p.). Control and diabetic groups were subdivided into four groups that were fed with standard chow diet for 4 weeks. Control (C) group was subdivided into Sedentary C, Training C, ASE Sedentary C and ASE Training C. Diabetic (D) group was subdivided into Sedentary D, Training D, ASE Sedentary D and ASE Training D. ASE (200 mg/kg/day) was administered by intragastric gavage, and the exercise training was performed on a treadmill (30 min/day; 5 days/week). Treatment with ASE associated with exercise training reduced the blood glucose (70.2%), total cholesterol (81.2%), aspartate aminotransferase (51.7%) and hepatic triglyceride levels (66.8%) and steatosis (72%) in ASE Training D group compared with the Sedentary D group. ASE associated with exercise training reduced the hepatic lipogenic proteins' expression (77.3%) and increased the antioxidant defense (63.1%), pAMPK expression (70.2%), cholesterol transporters (71.1%) and the pLKB1/LKB1 ratio (57.1%) in type 2 diabetic rats. In conclusion, ASE treatment associated with exercise training protects against hepatic steatosis in diabetic rats by reducing hepatic lipogenesis and increasing antioxidant defense and cholesterol excretion.


Subject(s)
Diabetes Mellitus, Type 2/complications , Euterpe/chemistry , Non-alcoholic Fatty Liver Disease/diet therapy , Physical Conditioning, Animal , Plant Extracts/pharmacology , Animals , Antioxidants/metabolism , Diabetes Mellitus, Experimental/complications , Enzymes/metabolism , Glycogen/metabolism , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Male , Non-alcoholic Fatty Liver Disease/etiology , Protein Carbonylation , Proteins/metabolism , Rats, Wistar , Seeds/chemistry
4.
J Cardiovasc Pharmacol ; 56(6): 619-26, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20838232

ABSTRACT

Previously, we have demonstrated that the seed of Euterpe oleracea Mart. (açaí) from the Amazon region exerts vasodilator and antihypertensive actions. The aim of our study was to assess the effects of oral chronic treatment with açaí seed extract (ASE, 300 mg · kg(-1) · d(-1)) on high-fat (HF) diet­induced metabolic syndrome (MS) in C57BL/6J mice. Four groups of C57BL/6 mice were fed with control diet (10% fat), ASE (10% fat), HF (60% fat), and HF + ASE (60% fat plus ASE) for 12 weeks. The vasodilator effects of acetylcholine (ACh) and nitroglycerine (NG) were studied in perfused mesenteric arterial bed. Body weight, plasma total cholesterol, triglyceride, glucose and insulin levels, oral glucose tolerance test, and oxidative damage were determined, and the insulin resistance measured by Homeostatic Model Assessment (HOMA) index. Vasodilator response to ACh but not to NG was reduced in HF mice, and ASE restored the response. Increased plasma malondialdehyde levels, body weight, plasma triglyceride, total cholesterol, glucose levels, and insulin resistance were observed in HF mice and reduced by ASE. Treatment with ASE also reduced glucose intolerance observed by oral glucose tolerance test in HF mice. In conclusion, ASE protected C57BL/6J mice fed HF diet from phenotypic and metabolic characteristics of MS, providing an alternative nutritional resource for prevention of MS.


Subject(s)
Arecaceae , Dietary Fats/administration & dosage , Fruit , Metabolic Syndrome/drug therapy , Plant Extracts/therapeutic use , Animals , Dietary Fats/adverse effects , Insulin Resistance/physiology , Male , Metabolic Syndrome/complications , Metabolic Syndrome/etiology , Mice , Mice, Inbred C57BL , Obesity/complications , Obesity/prevention & control , Plant Extracts/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...